You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Task Allocation Optimization for Multicore Embedded Systems


Publication Type:

Doctoral Thesis


Mälardalen University


Modern embedded systems are becoming increasingly performance intensive, since, on the one hand, they include more complex functionality than before, and one the other hand, the functionality that was typically realized with hardware is often moved to software. Multicore technology, previously successfully used for general-purpose systems, is penetrating into the domain of embedded systems. While it does increase the performance capacity, it also introduces the problem of how to allocate software tasks to the cores of the hardware platform, as different allocations exhibit different extra-functional properties. An intuitive example is allocating too many tasks to a core - the core will be overloaded and tasks will miss their deadlines. This thesis addresses the issue of task allocation in multicore embedded systems. The overall goal of the thesis is to advance the way soft real-time multicore systems are developed, by providing new methods and tools that enable deciding already at design-time which task to run on which core, with respect to a number of timing-related extra-functional properties. To achieve this goal, we developed a model-based framework for task allocation optimization. The framework uses model simulation in order to obtain performance predictions for particular task allocations. This in turn enables testing a large number of allocation candidates in search for one that exhibits good timing-related performance. Apart from defining and implementing the framework, three additional contributions are provided, each tackling a particular aspect of the framework: the influence of task allocation on communication duration is studied and interpreted in the context of design-time model-based analysis; a novel heuristic for guiding task allocation optimization is defined; and finally, a novel optimization method combining performance prediction and performance measurement is defined.


author = {Juraj Feljan},
title = {Task Allocation Optimization for Multicore Embedded Systems},
isbn = {978-91-7485-241-7},
month = {December},
year = {2015},
school = {M{\"a}lardalen University},
url = {}