You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Further Developments of Applicator Concepts for Detection of Body Part Inhomogeneities


Nikola Petrovic, Christian Pichot , Per Olov Risman

Research group:

Publication Type:

Conference/Workshop Paper


2019 IEEE CAMA Conference on Antenna Measurement and Applications


We present significant improvements on in particular our transmitting applicator and its performance. This is a crucial component of our system for direct detection of internal inhomogeneities such as breast tumors and brain hemorrhages by a special transmitting applicator and specially polarized receiving applicators. The operating frequency is about 1 GHz. The transmitting applicator is unique by no need to contact the object under study (OUS) and does not generate any surface waves at it. The primary field has properties behaving as from a magnetic monopole. The overall system allows direct detection without a need for phase measurements, which provides the possibility of using a simple microwave generator and simple rectification and position registration of the received signals. The receiving 3D contacting applicator contains a high-permittivity ceramic and is resonant in order to provide the desired field polarization sensitivity. The desired system properties are achieved by optimized use of the orthogonality properties of the primary magnetic, induced electric, and diffracted electric fields.


author = {Nikola Petrovic and Christian Pichot and Per Olov Risman},
title = {Further Developments of Applicator Concepts for Detection of Body Part Inhomogeneities},
month = {October},
year = {2019},
booktitle = {2019 IEEE CAMA Conference on Antenna Measurement and Applications },
url = {}