You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Schedulability using native non-preemptive groups on an AUTOSAR/OSEK platform with caches


Leo Hatvani, Reinder J. Bril, Sebastian Altmeyer

Publication Type:

Conference/Workshop Paper


Design, Automation & Test in Europe Conference & Exhibition


Fixed-priority preemption threshold scheduling (FPTS) is a limited preemptive scheduling scheme that generalizes both fixed-priority preemptive scheduling (FPPS) and fixed-priority non-preemptive scheduling (FPNS). By increasing the priority of tasks as they start executing it reduces the set of tasks that can preempt any given task. A subset of FPTS task configurations can be implemented natively on any AUTOSAR/OSEK compatible platform by utilizing the platform’s native implementation of non-preemptive task groups via so called internal resources. The limiting factor for this implementation is the number of internal resources that can be associated with any individual task. OSEK and consequently AUTOSAR limit this number to one internal resource per task. In this work, we investigate the impact of this limitation on the schedulability of task sets when cache related preemption delays are taken into account. We also consider the impact of this restriction on the stack size when the tasks are executed on a shared-stack system.


author = {Leo Hatvani and Reinder J. Bril and Sebastian Altmeyer},
title = {Schedulability using native non-preemptive groups on an AUTOSAR/OSEK platform with caches},
month = {March},
year = {2017},
booktitle = {Design, Automation {\&} Test in Europe Conference {\&} Exhibition},
url = {}