You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Cyberattacks: Modeling, Analysis, and Mitigation

Fulltext:


Authors:


Publication Type:

Conference/Workshop Paper

Venue:

6th International Conference on Computer, Software and Modeling


Abstract

Industrial cybersecurity has risen as an important topic of research nowadays. The heavy connectivity by the Internet of Things (IoT) and the growth of cyberattacks against industrial assets cause this risen and attract attention to the cybersecurity field. While fostering current software applications and use-cases, the ubiquitous access to the Internet has also exposed operational technologies to new and challenging security threats that need to be addressed. As the number of attacks increases, their visibility decreases. An attack can modify the Cyber-Physical Systems (CPSs) quality to avoid proper quality assessment. They can disrupt the system design process and adversely affect a product’s design purpose. This working progress paper presents our approach to modeling, analyzing, and mitigating cyberattacks in CPS. We model the normal behavior of the application as well as cyberattacks with the help of Microsoft Security Development Lifecycle (SDL) and threat modeling approach (STRIDE). Then verify the application and attacks model using a model checking tool and propose mitigation strategies to decrease the risk of vulnerabilities. The results can be used to improve the system design to overcome the vulnerabilities.

Bibtex

@inproceedings{Abbaspour6503,
author = {Sara Abbaspour},
title = {Cyberattacks: Modeling, Analysis, and Mitigation},
month = {September},
year = {2022},
booktitle = {6th International Conference on Computer, Software and Modeling},
url = {http://www.es.mdu.se/publications/6503-}
}