You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.
The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.
For the reports in this repository we specifically note that
- the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
- the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
- technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
- in other cases, please contact the copyright owner for detailed information
By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.
If you are in doubt, feel free to contact webmaster@ide.mdh.se
Machine learning-based cache miss prediction
Publication Type:
Journal article
Venue:
International Journal on Software Tools for Technology Transfer
Abstract
Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep CPU knowledge, limiting their usability for quick insights. This paper presents a deep learning-based approach for simulating a key CPU component, cache memory. Our model “learns” cache characteristics by observing cache miss distributions, without needing detailed manual modeling. This method accelerates simulations and adapts to different program needs, demonstrating accuracy comparable to traditional simulators. Tested on Sysbench and image processing algorithms, it shows promise for faster, scalable, and hardware-independent simulations.
Bibtex
@article{Jelačić7352,
author = {Edin Jelačić and Cristina Seceleanu and Ning Xiong and Peter Backeman and Sharifeh Yaghoobi and Tiberiu Seceleanu},
title = {Machine learning-based cache miss prediction},
volume = {1},
number = {1},
journal = { International Journal on Software Tools for Technology Transfer},
url = {http://www.es.mdu.se/publications/7352-}
}