You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Scalability and Robustness of Time-Series Databases for Cloud-Native Monitoring of Industrial Processes

Publication Type:

Conference/Workshop Paper


IEEE Seventh Conference on Cloud Computing


Today’s industrial control systems store large amounts of monitored sensor data in order to optimize industrial processes. In the last decades, architects have designed such systems mainly under the assumption that they operate in closed, plant-side IT infrastructures without horizontal scalability. Cloud technologies could be used in this context to save local IT costs and enable higher scalability, but their maturity for industrial applications with high requirements for responsiveness and robustness is not yet well understood. We propose a conceptual architecture as a basis to designing cloud-native monitoring systems. As a first step we benchmarked three open source timeseries databases (OpenTSDB, KairosDB and Databus) on cloud infrastructures with up to 36 nodes with workloads from realistic industrial applications. We found that at least KairosDB fulfills our initial hypotheses concerning scalability and reliability.


author = {Thomas Goldschmidt and Anton Jansen and Heiko Koziolek and Jens Doppelhamer and Hongyu Pei-Breivold},
title = {Scalability and Robustness of Time-Series Databases for Cloud-Native Monitoring of Industrial Processes},
month = {July},
year = {2014},
booktitle = {IEEE Seventh Conference on Cloud Computing},
url = {}