You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Supporting End-to-end Data Propagation Delay Analysis for TSN-based Distributed Vehicular Embedded Systems


Publication Type:

Journal article


Journal of Systems Architecture, 2023


In this paper, we identify that the existing end-to-end data propagation delay analysis for distributed embedded systems can calculate pessimistic (over-estimated) analysis results when the nodes are synchronized. This is particularly the case of the Scheduled Traffic (ST) class in Time-sensitive Networking (TSN), which is scheduled offline according to the IEEE 802.1Qbv standard and the nodes are synchronized according to the IEEE 802.1AS standard. We present a comprehensive system model for distributed embedded systems that incorporates all of the above mentioned aspect as well as all traffic classes in TSN. We extend the analysis to support both synchronization and non-synchronization among the ECUs as well as offline schedules on the networks. The extended analysis can now be used to analyze all traffic classes in TSN when the nodes are synchronized without introducing any pessimism in the analysis results. We evaluate the proposed model and the extended analysis on a vehicular industrial use case.


author = {Bahar Houtan and Mohammad Ashjaei and Masoud Daneshtalab and Mikael Sj{\"o}din and Saad Mubeen},
title = {Supporting End-to-end Data Propagation Delay Analysis for TSN-based Distributed Vehicular Embedded Systems},
volume = {138},
month = {August},
year = {2023},
journal = {Journal of Systems Architecture, 2023},
url = {}