You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Combining Ontology and Large Language Models to Identify Recurring Machine Failures in Free-Text Fields

Publication Type:

Conference/Workshop Paper




Companies must enhance total maintenance effectiveness to stay competitive, focusing on both digitalization and basic maintenance procedures. Digitalization offers technologies for data-driven decision-making, but many maintenance decisions still lack a factual basis. Prioritizing efficiency and effectiveness require analyzing equipment history, facilitated by using Computerized Maintenance Management Systems (CMMS). However, CMMS data often contains unstructured free-text, leading to manual analysis, which is resource-intensive and reactive, focusing on short time periods and specific equipment. Two approaches are available to solve the issue: minimizing free-text entries or using advanced methods for processing them. Free-text allows detailed descriptions but may lack completeness, while structured reporting aids automated analysis but may limit fault description richness. As knowledge and experience are vital assets for companies this research uses a hybrid approach by combining Natural Language Processing with domain specific ontology and Large Language Models to extract information from free-text entries, enabling the possibility of real-time analysis e.g., identifying recurring failure and knowledge sharing across global sites.


author = {Marcus Bengtsson and Mobyen Uddin Ahmed and Ricky Stanley D Cruze and Peter Funk and Tomohiko Sakao and Rickard Sohlberg Dr H.C.},
title = {Combining Ontology and Large Language Models to Identify Recurring Machine Failures in Free-Text Fields},
month = {April},
year = {2024},
url = {}