You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Case-Based Reasoning for Explaining Probabilistic Machine Learning


Publication Type:

Journal article


International Journal of Computer Science and Information Technology




This paper describes a generic framework for explaining the prediction of probabilistic machine learning algorithms using cases. The framework consists of two components: a similarity metric between cases that is defined relative to a probability model and an novel case-based approach to justifying the probabilistic prediction by estimating the prediction error using case-based reasoning. As basis for deriving similarity metrics, we define similarity in terms of the principle of interchangeability that two cases are considered similar or identical if two probability distributions, derived from excluding either one or the other case in the case base, are identical. Lastly, we show the applicability of the proposed approach by deriving a metric for linear regression, and apply the proposed approach for explaining predictions of the energy performance of households.


author = {Tomas Olsson and Daniel Gillblad and Peter Funk and Ning Xiong},
title = {Case-Based Reasoning for Explaining Probabilistic Machine Learning},
volume = {6},
number = {2},
pages = {87--101},
month = {April},
year = {2014},
journal = {International Journal of Computer Science and Information Technology},
url = {}