You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Improved Message Forwarding for Multi-Hop HaRTES Real-Time Ethernet Networks


Publication Type:

Journal article


Journal of Signal Processing Systems




Nowadays, switched Ethernet networks are used in complex systems that encompass tens to hundreds of nodes and thousands of signals. Such scenarios require multi-switch architectures where communications frequently occur in multiple hops. In this paper we investigate techniques to allow efficient multi-hop communication using HaRTES switches. These are modified Ethernet switches that provide real-time traffic scheduling, dynamic bandwidth management and temporal isolation between real-time and non-real-time traffic. This paper addresses the problem of forwarding traffic in HaRTES networks. Two methods have been recently proposed, namely Distributed Global Scheduling (DGS) that buffers traffic between switches, and Reduced Buffering Scheme (RBS), that uses immediate forwarding. In this paper, we discuss the design and implementation of RBS within HaRTES and we carry out an experimental validation with a prototype implementation. Then, we carry out a comparison between RBS and DGS using worst-case response time analysis and simulation. The comparison clearly establishes the superiority of RBS concerning end-to-end response times. In fact, with sample message sets, we achieved reductions in end-to-end delay that were as high as 80%.


author = {Mohammad Ashjaei and Luis Silva and Moris Behnam and Paulo Pedreiras and Reinder J. Bril and Luis Almeida and Thomas Nolte},
title = {Improved Message Forwarding for Multi-Hop HaRTES Real-Time Ethernet Networks},
editor = {Springer},
volume = {84},
number = {1},
pages = {47--67},
month = {July},
year = {2016},
journal = {Journal of Signal Processing Systems},
url = {}