You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Synthesising Schedules to Improve QoS of Best-effort Traffic in TSN Networks


Publication Type:

Conference/Workshop Paper


29th International Conference on Real-Time Networks and Systems (RTNS'21)


The IEEE Time-Sensitive Networking (TSN) standards' amendment 802.1Qbv provides real-time guarantees for Scheduled Traffic (ST) streams by the Time Aware Shaper (TAS) mechanism. In this paper, we develop offline schedule optimization objective functions to configure the TAS for ST streams, which can be effective to achieve a high Quality of Service (QoS) of lower priority Best-Effort (BE) traffic. This becomes useful if real-time streams from legacy protocols are configured to be carried by the BE class or if the BE class is used for value-added (but non-critical) services. We present three alternative objective functions, namely Maximization, Sparse and Evenly Sparse, followed by a set of constraints on ST streams. Based on simulated stream traces in OMNeT++/INET TSN NeSTiNg simulator, we compare our proposed schemes with a most commonly applied objective function in terms of overall maximum end-to-end delay and deadline misses of BE streams. The results confirm that changing the schedule synthesis objective to our proposed schemes ensures timely delivery and lower end-to-end delays in BE streams.


author = {Bahar Houtan and Mohammad Ashjaei and Masoud Daneshtalab and Mikael Sj{\"o}din and Saad Mubeen},
title = {Synthesising Schedules to Improve QoS of Best-effort Traffic in TSN Networks},
month = {April},
year = {2021},
booktitle = {29th International Conference on Real-Time Networks and Systems (RTNS'21)},
url = {}