You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Requirements Classification for Smart Allocation: A Case Study in the Railway Industry

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

2023 IEEE 31st International Requirements Engineering Conference

DOI:

10.1109/RE57278.2023.00028


Abstract

Allocation of requirements to different teams is a typical preliminary task in large-scale system development projects. This critical activity is often performed manually and can benefit from automated requirements classification techniques. To date, limited evidence is available about the effectiveness of existing machine learning (ML) approaches for requirements classification in industrial cases. This paper aims to fill this gap by evaluating state-of-the-art language models and ML algorithms for classification in the railway industry. Since the interpretation of the results of ML systems is particularly relevant in the studied context, we also provide an information augmentation approach to complement the output of the ML-based classification. Our results show that the BERT uncased language model with the softmax classifier can allocate the requirements to different teams with a 76% F1 score when considering requirements allocation to the most frequent teams. Information augmentation provides potentially useful indications in 76% of the cases. The results confirm that currently available techniques can be applied to real-world cases, thus enabling the first step for technology transfer of automated requirements classification. The study can be useful to practitioners operating in requirements-centered contexts such as railways, where accurate requirements classification becomes crucial for better allocation of requirements to various teams.

Bibtex

@inproceedings{Bashir6697,
author = {Sarmad Bashir and Muhammad Abbas and Alessio Ferrari and Mehrdad Saadatmand and Pernilla Lindberg},
title = {Requirements Classification for Smart Allocation: A Case Study in the Railway Industry},
pages = {201--211},
month = {September},
year = {2023},
booktitle = {2023 IEEE 31st International Requirements Engineering Conference},
url = {http://www.es.mdu.se/publications/6697-}
}