You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.
The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.
For the reports in this repository we specifically note that
- the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
- the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
- technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
- in other cases, please contact the copyright owner for detailed information
By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.
If you are in doubt, feel free to contact webmaster@ide.mdh.se
Architecture optimization: Speed or accuracy? Both!
Publication Type:
Journal article
Venue:
Software Quality Journal (Springer)
Abstract
Embedded systems are becoming more and more complex, thus demanding innovative means to tame their challenging development. Among others, early architecture optimization represents a crucial activity in the development of embedded systems to maximise the usage of their limited resources and to respect their real-time requirements. Typically, architecture optimization seeks good architecture candidates based on model-based analysis. Leveraging abstractions and estimates, this analysis usually produces approximations useful for comparing architecture candidates. Nonetheless, approximations do not provide enough accuracy in estimating crucial extra-functional properties. In this article, we provide an architecture optimization framework that profits from both the speed of model-based predictions and the accuracy of execution-based measurements. Model-based optimization rapidly finds a good architecture candidate, which is refined through optimization based on monitored executions of automatically generated code. Moreover, the framework enables the developer to leverage her optimization experience. More specifically, the developer can use runtime monitoring of generated code execution to manually adjust task allocation at modelling level, and commit the changes without halting execution. In the article, our architecture optimization mechanism is first described from a general point of view and then exploited for optimizing the allocation of software tasks to the processing cores of a multicore embedded system; we target extra-functional properties that can be concretely represented and automatically compared for different architectural alternatives (such as memory consumption, energy consumption, or responsetime).
Bibtex
@article{Ciccozzi4521,
author = {Federico Ciccozzi and Juraj Feljan and Jan Carlson and Ivica Crnkovic},
title = {Architecture optimization: Speed or accuracy? Both!},
volume = {22},
number = {1},
pages = {1--28},
month = {October},
year = {2016},
journal = {Software Quality Journal (Springer)},
url = {http://www.es.mdu.se/publications/4521-}
}