You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications


Publication Type:

Journal article


IEEE Transactions on Cybernetics






The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances.


author = {Branko Miloradovic and Baran {\c{C}}{\"u}r{\"u}kl{\"u} and Mikael Ekstr{\"o}m and Alessandro Papadopoulos},
title = {GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications},
volume = {52},
number = {10},
pages = {10627--10638},
month = {May},
year = {2021},
journal = {IEEE Transactions on Cybernetics},
publisher = {IEEE},
url = {}